Article ID Journal Published Year Pages File Type
416998 Computational Statistics & Data Analysis 2010 10 Pages PDF
Abstract

Mis-specification of the covariance structure in longitudinal data can result in loss of regression estimation efficiency and in misleading influence diagnostics. Therefore, a rule-of-thumb, even one that is rough, for detecting covariance mis-specification would prove valuable to data analysts. In this paper, we examine two indices for detecting the mis-specification of the covariance structure of longitudinal normal, Poisson or binary responses. Our work shows that the suggested indices prove to be worthwhile when there are no missing time observations; they, however, should be used with caution when there are MAR drop-outs.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,