Article ID Journal Published Year Pages File Type
417092 Computational Statistics & Data Analysis 2010 15 Pages PDF
Abstract

This paper presents an approach that partitions data sets of unlabeled binary vectors without a priori information about the number of clusters or the saliency of the features. The unsupervised binary feature selection problem is approached using finite mixture models of multivariate Bernoulli distributions. Using stochastic complexity, the proposed model determines simultaneously the number of clusters in a given data set composed of binary vectors and the saliency of the features used. We conduct different applications involving real data, document classification and images categorization to show the merits of the proposed approach.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
,