Article ID Journal Published Year Pages File Type
417150 Computational Statistics & Data Analysis 2009 14 Pages PDF
Abstract

A simple parametrization, built from the definition of cubic splines, is shown to facilitate the implementation and interpretation of penalized spline models, whatever configuration of knots is used. The parametrization is termed value-first derivative parametrization. Inference is Bayesian and explores the natural link between quadratic penalties and Gaussian priors. However, a full Bayesian analysis seems feasible only for some penalty functionals. Alternatives include empirical Bayes inference methods involving model selection type criteria. The proposed methodology is illustrated by an application to survival analysis where the usual Cox model is extended to allow for time-varying regression coefficients.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,