Article ID Journal Published Year Pages File Type
417285 Computational Statistics & Data Analysis 2008 20 Pages PDF
Abstract

A procedure is proposed for computing the autocovariances and the ARMA representations of the squares, and higher-order powers, of Markov-switching GARCH models. It is shown that many interesting subclasses of the general model can be discriminated in view of their autocovariance structures. Explicit derivation of the autocovariances allows for parameter estimation in the general model, via a GMM procedure. It can also be used to determine how many ARMA representations are needed to identify the Markov-switching GARCH parameters. A Monte Carlo study and an application to the Standard & Poor index are presented.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,