Article ID Journal Published Year Pages File Type
417527 Computational Statistics & Data Analysis 2012 14 Pages PDF
Abstract

A new heteroskedastic hedonic regression model is suggested which takes into account time-varying volatility and is applied to a blue chips art market. A nonparametric local likelihood estimator is proposed, and this is more precise than the often used dummy variables method. The empirical analysis reveals that errors are considerably non-Gaussian, and that a Student distribution with time-varying scale and degrees of freedom does well in explaining deviations of prices from their expectation. The art price index is a smooth function of time and has a variability that is comparable to the volatility of stock indices.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,