Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
417663 | Computational Statistics & Data Analysis | 2011 | 5 Pages |
Abstract
The inversion method for generating non-uniformly distributed random variates is a crucial part in many applications of Monte Carlo techniques, e.g., when low discrepancy sequences or copula based models are used. Unfortunately, closed form expressions of quantile functions of important distributions are often not available. The (generalized) inverse Gaussian distribution is a prominent example. It is shown that algorithms that are based on polynomial approximation are well suited for this distribution. Their precision is close to machine precision and they are much faster than root finding methods like the bisection method that has been recently proposed.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Josef Leydold, Wolfgang Hörmann,