Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
417755 | Computational Statistics & Data Analysis | 2010 | 10 Pages |
Abstract
Maximum likelihood estimation (MLE) of stochastic differential equations (SDEs) is difficult because in general the transition density function of these processes is not known in closed form, and has to be approximated somehow. An approximation based on efficient importance sampling (EIS) is detailed. Monte Carlo experiments, based on widely used diffusion processes, evaluate its performance against an alternative importance sampling (IS) strategy, showing that EIS is at least equivalent, if not superior, while allowing a greater flexibility needed when examining more complicated models.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
S. Pastorello, E. Rossi,