Article ID Journal Published Year Pages File Type
417984 Discrete Applied Mathematics 2016 16 Pages PDF
Abstract

For an integer s>0s>0 and for u,v∈V(G)u,v∈V(G) with u≠vu≠v, an (s;u,v)(s;u,v)-trail-system of GG is a subgraph HH consisting of ss edge-disjoint (u,v)(u,v)-trails. A graph is supereulerian with widthss if for any u,v∈V(G)u,v∈V(G) with u≠vu≠v, GG has a spanning (s;u,v)(s;u,v)-trail-system. The supereulerian widthμ′(G)μ′(G) of a graph GG is the largest integer ss such that GG is supereulerian with width kk for every integer kk with 0≤k≤s0≤k≤s. Thus a graph GG with μ′(G)≥2μ′(G)≥2 has a spanning Eulerian subgraph. Catlin (1988) introduced collapsible graphs to study graphs with spanning Eulerian subgraphs, and showed that every collapsible graph GG satisfies μ′(G)≥2μ′(G)≥2 (Catlin, 1988; Lai et al., 2009). Graphs GG with μ′(G)≥2μ′(G)≥2 have also been investigated by Luo et al. (2006) as Eulerian-connected graphs. In this paper, we extend collapsible graphs to ss-collapsible graphs and develop a new related reduction method to study μ′(G)μ′(G) for a graph GG. In particular, we prove that K3,3K3,3 is the smallest 3-edge-connected graph with μ′<3μ′<3. These results and the reduction method will be applied to determine a best possible degree condition for graphs with supereulerian width at least 3, which extends former results in Catlin (1988) and Lai (1988).

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , ,