Article ID Journal Published Year Pages File Type
418108 Computational Statistics & Data Analysis 2007 18 Pages PDF
Abstract

The problem of consistent estimation of the regression coefficients when some prior information about the regression coefficients is available is considered. Such prior information is expressed in the form of exact linear restrictions. The knowledge of covariance matrix of measurement errors that is associated with explanatory variables is used to construct the consistent estimators. Some consistent estimators are suggested which satisfy the exact linear restrictions also. Their asymptotic properties are derived and analytically analyzed under a multivariate ultrastructural model with not necessarily normally distributed measurement errors. The finite sample properties of the estimators are studied through a Monte-Carlo simulation experiment.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,