Article ID Journal Published Year Pages File Type
418486 Discrete Applied Mathematics 2012 19 Pages PDF
Abstract

The multileaf collimator sequencing problem is an important component in effective cancer treatment delivery. The problem can be formulated as finding a decomposition of an integer matrix into a weighted sequence of binary matrices whose rows satisfy a consecutive ones property. Minimising the cardinality of the decomposition is an important objective and has been shown to be strongly NP-hard, even for a matrix restricted to a single column or row. We show that in this latter case it can be solved efficiently as a shortest path problem, giving a simple proof that the one-row problem is fixed-parameter tractable in the maximum intensity. We develop new linear and constraint programming models exploiting this result. Our approaches significantly improve the best known for the problem, bringing real-world sized problem instances within reach of exact algorithms.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,