Article ID Journal Published Year Pages File Type
418582 Discrete Applied Mathematics 2011 8 Pages PDF
Abstract

In data analysis problems where the data are represented by vectors of real numbers, it is often the case that some of the data-points will have “missing values”, meaning that one or more of the entries of the vector that describes the data-point is not observed. In this paper, we propose a new approach to the imputation of missing binary values. The technique we introduce employs a “similarity measure” introduced by Anthony and Hammer (2006) [1]. We compare experimentally the performance of our technique with ones based on the usual Hamming distance measure and multiple imputation.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,