Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
418640 | Discrete Applied Mathematics | 2010 | 17 Pages |
Rank-width is a structural graph measure introduced by Oum and Seymour and aimed at better handling of graphs of bounded clique-width. We propose a formal mathematical framework and tools for easy design of dynamic algorithms running directly on a rank-decomposition of a graph (on contrary to the usual approach which translates a rank-decomposition into a clique-width expression, with a possible exponential jump in the parameter). The main advantage of this framework is a fine control over the runtime dependency on the rank-width parameter. Our new approach is linked to a work of Courcelle and Kanté [7] who first proposed algebraic expressions with a so-called bilinear graph product as a better way of handling rank-decompositions, and to a parallel recent research of Bui-Xuan, Telle and Vatshelle.