Article ID Journal Published Year Pages File Type
418893 Discrete Applied Mathematics 2008 10 Pages PDF
Abstract

A standard Quadratic Programming problem (StQP) consists in minimizing a (nonconvex) quadratic form over the standard simplex. For solving a StQP we present an exact and a heuristic algorithm, that are based on new theoretical results for quadratic and convex optimization problems. With these results a StQP is reduced to a constrained nonlinear minimum weight clique problem in an associated graph. Such a clique problem, which does not seem to have been studied before, is then solved with an exact and a heuristic algorithm. Some computational experience shows that our algorithms are able to solve StQP problems of at least one order of magnitude larger than those reported in the literature.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,