Article ID Journal Published Year Pages File Type
419163 Discrete Applied Mathematics 2007 17 Pages PDF
Abstract

Using a general resolution of barycentric systems we give a generalization of Tutte's theorem on convex drawing of planar graphs. We deduce a characterization of the edge coverings into pairwise non-crossing paths which are stretchable: such a system is stretchable if and only if each subsystem of at least two paths has at least three free vertices (vertices of the outer face of the induced subgraph which are internal to none of the paths of the subsystem). We also deduce that a contact system of pseudo-segments is stretchable if and only if it is extendible.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,