Article ID Journal Published Year Pages File Type
419375 Discrete Applied Mathematics 2013 17 Pages PDF
Abstract

We study a generalized Friedman’s urn model with multiple drawings of white and blue balls. After a drawing, the replacement follows a policy of opposite reinforcement. We give the exact expected value and variance of the number of white balls after a number of draws, and determine the structure of the moments. Moreover, we obtain a strong law of large numbers, and a central limit theorem for the number of white balls. Interestingly, the central limit theorem is obtained combinatorially via the method of moments and probabilistically via martingales. We briefly discuss the merits of each approach. The connection to a few other related urn models is briefly sketched.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,