Article ID Journal Published Year Pages File Type
419586 Discrete Applied Mathematics 2010 14 Pages PDF
Abstract

The traditional Generalized Assignment Problem (GAP) seeks an assignment of customers to facilities that minimizes the sum of the assignment costs while respecting the capacity of each facility. We consider a nonlinear GAP where, in addition to the assignment costs, there is a nonlinear cost function associated with each facility whose argument is a linear function of the customers assigned to the facility. We propose a class of greedy algorithms for this problem that extends a family of greedy algorithms for the GAP. The effectiveness of these algorithms is based on our analysis of the continuous relaxation of our problem. We show that there exists an optimal solution to the continuous relaxation with a small number of fractional variables and provide a set of dual multipliers associated with this solution. This set of dual multipliers is then used in the greedy algorithm. We provide conditions under which our greedy algorithm is asymptotically optimal and feasible under a stochastic model of the parameters.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,