Article ID Journal Published Year Pages File Type
419624 Discrete Applied Mathematics 2013 13 Pages PDF
Abstract

We consider in this article the Two-Machine Cross-Docking Flow Shop Problem, which is a special case of scheduling with typed tasks, where we have two types of tasks and one machine per type. Precedence constraints exist between tasks, but only from a task of the first type to a task of the second type. The precedence relation is thus a directed bipartite graph. Minimizing the makespan is strongly NP-hard even with unit processing times, but any greedy method yields a 2-approximation solution. In this paper, we are interested in establishing new approximability results for this problem. More specifically, we investigate three directions: list scheduling algorithms based on the relaxation of the resources, the decomposition of the problem according to the connected components of the precedence graph, and finally the search of the induced balanced subgraph with a bounded degree.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,