Article ID Journal Published Year Pages File Type
419760 Discrete Applied Mathematics 2009 10 Pages PDF
Abstract

This paper describes an approach to generalized Bernoulli polynomials in higher dimensions by using Clifford algebras. Due to the fact that the obtained Bernoulli polynomials are special hypercomplex holomorphic (monogenic) functions in the sense of Clifford Analysis, they have properties very similar to those of the classical polynomials. Hypercomplex Pascal and Bernoulli matrices are defined and studied, thereby generalizing results recently obtained by Zhang and Wang (Z. Zhang, J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154 (11) (2006) 1622–1632).

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,