Article ID Journal Published Year Pages File Type
420063 Discrete Applied Mathematics 2007 10 Pages PDF
Abstract

Induction (or transformation) by bipartite graphs is one of the most important operations on matroids, and it is well known that the induction of a matroid by a bipartite graph is again a matroid. As an abstract form of this fact, the induction of a matroid by a linking system is known to be a matroid.M-convex functions are quantitative extensions of matroidal structures, and they are known as discrete convex functions. As with matroids, it is known that the induction of an M-convex function by networks generates an M-convex function. As an abstract form of this fact, this paper shows that the induction of an M-convex function by linking systems generates an M-convex function. Furthermore, we show that this result also holds for M-convex functions on constant-parity jump systems. Previously known operations such as aggregation, splitting, and induction by networks can be understood as special cases of this construction.

Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,