Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
420247 | Discrete Applied Mathematics | 2006 | 17 Pages |
Many problems in the field of computational biology consist of the analysis of so-called gene-expression data. The successful application of approximation and optimization techniques, dynamical systems, algorithms and the utilization of the underlying combinatorial structures lead to a better understanding in that field. For the concrete example of gene-expression data we extend an algorithm, which exploits discrete information. This is lying in extremal points of polyhedra, which grow step by step, up to a possible stopping.We study gene-expression data in time, mathematically model it by a time-continuous system, and time-discretize this system. By our algorithm we compute the regions of stability and instability. We give a motivating introduction from genetics, present biological and mathematical interpretations of (in)stability, point out structural frontiers and give an outlook to future research.