Article ID Journal Published Year Pages File Type
420516 Discrete Applied Mathematics 2008 5 Pages PDF
Abstract

Let DD be a directed graph; the (l,ω)(l,ω)-Independence Number of graph DD, denoted by αl,ω(D)αl,ω(D), is an important performance parameter for interconnection networks. De Bruijn networks and Kautz networks, denoted by B(d,n)B(d,n) and K(d,n)K(d,n) respectively, are versatile and efficient topological structures of interconnection networks. For l=1,2,…,nl=1,2,…,n, this paper shows that αl,d−1(B(d,n))=dn,αl,d−1(K(d,n))=αl,d(K(d,n))=dn+dn−1αl,d−1(B(d,n))=dn,αl,d−1(K(d,n))=αl,d(K(d,n))=dn+dn−1 if d≥3d≥3 and n≤d−2n≤d−2. In particular, the paper shows the exact value of the Independence Number for B(d,1)B(d,1) and B(d,2)B(d,2) for any dd. For the generalized situation, the paper obtains a lower bound αl,d−1(B(d,n))≥d2αl,d−1(B(d,n))≥d2 if n≥3n≥3 and d≥5d≥5.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,