Article ID Journal Published Year Pages File Type
420531 Discrete Applied Mathematics 2009 13 Pages PDF
Abstract

We present an algorithm that supports operations for modifying a split graph by adding edges or vertices and deleting edges, such that after each modification the graph is repaired to become a split graph in a minimal way. In particular, if the graph is not split after the modification, the algorithm computes a minimal, or if desired even a minimum, split completion or deletion of the modified graph. The motivation for such operations is similar to the motivation for fully dynamic algorithms for particular graph classes. In our case we allow all modifications to the graph and repair, rather than allowing only the modifications that keep the graph split. Fully dynamic algorithms of the latter kind are known for split graphs [L. Ibarra, Fully dynamic algorithms for chordal graphs and split graphs, Technical Report DCS-262-IR, University of Victoria, Canada, 2000].Our results can be used to design linear time algorithms for some recognition and completion problems, where the input is supplied in an on-line fashion.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,