Article ID Journal Published Year Pages File Type
420598 Discrete Applied Mathematics 2008 13 Pages PDF
Abstract

In this paper, we study a new problem of convex drawing of planar graphs with non-convex boundary constraints, and call a drawing in which every inner-facial cycle is drawn as a convex polygon an inner-convex drawing. It is proved that every triconnected plane graph with the boundary fixed with a star-shaped polygon whose kernel has a positive area admits an inner-convex drawing. We also prove that every four-connected plane graph whose boundary is fixed with a crown-shaped polygon admits an inner-convex drawing. We present linear time algorithms to construct inner-convex drawings for both cases.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,