Article ID Journal Published Year Pages File Type
420637 Discrete Applied Mathematics 2009 15 Pages PDF
Abstract

The Reformulation-Linearization Technique (RLT) provides a hierarchy of relaxations spanning the spectrum from the continuous relaxation to the convex hull representation for linear 0-1 mixed-integer and general mixed-discrete programs. We show in this paper that this result holds identically for semi-infinite programs of this type. As a consequence, we extend the RLT methodology to describe a construct for generating a hierarchy of relaxations leading to the convex hull representation for bounded 0-1 mixed-integer and general mixed-discrete convex programs, using an equivalent semi-infinite linearized representation for such problems as an intermediate stepping stone in the analysis. For particular use in practice, we provide specialized forms of the resulting first-level RLT formulation for such mixed 0-1 and discrete convex programs, and illustrate these forms through two examples.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,