Article ID Journal Published Year Pages File Type
420953 Discrete Applied Mathematics 2007 9 Pages PDF
Abstract

In this paper, we extend known relationships between Cayley digraphs and their subgraphs and coset graphs with respect to subgroups to obtain a number of general results on homomorphism between them. Intuitively, our results correspond to synthesizing alternative, more economical, interconnection networks by reducing the number of dimensions and/or link density of existing networks via mapping and pruning. We discuss applications of these results to well-known and useful interconnection networks such as hexagonal and honeycomb meshes, including the derivation of provably correct shortest-path routing algorithms for such networks.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,