Article ID Journal Published Year Pages File Type
420962 Discrete Applied Mathematics 2007 15 Pages PDF
Abstract

It is now well-documented that the structure of evolutionary relationships between a set of present-day species is not necessarily tree-like. The reason for this is that reticulation events such as hybridizations mean that species are a mixture of genes from different ancestors. Since such events are relatively rare, a fundamental problem for biologists is to determine the smallest number of hybridization events required to explain a given (input) set of data in a single (hybrid) phylogeny. The main results of this paper show that computing this smallest number is APX-hard, and thus NP-hard, in the case the input is a collection of phylogenetic trees on sets of present-day species. This answers a problem which was raised at a recent conference (Phylogenetic Combinatorics and Applications, Uppsala University, 2004). As a consequence of these results, we also correct a previously published NP-hardness proof in the case the input is a collection of binary sequences, where each sequence represents the attributes of a particular present-day species. The APX-hardness of these problems means that it is unlikely that there is an efficient algorithm for either computing the result exactly or approximating it to any arbitrary degree of accuracy.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,