Article ID Journal Published Year Pages File Type
421175 Discrete Applied Mathematics 2013 9 Pages PDF
Abstract

We introduce the notion of a boxed mesh pattern and study avoidance of these patterns on permutations. We prove that the celebrated former Stanley–Wilf conjecture is not true for all but eleven boxed mesh patterns; for seven out of the eleven patterns the former conjecture is true, while we do not know the answer for the remaining four (length-four) patterns. Moreover, we prove that an analogue of a well-known theorem of Erdős and Szekeres does not hold for boxed mesh patterns of lengths larger than 2. Finally, we discuss enumeration of permutations avoiding simultaneously two or more length-three boxed mesh patterns, where we meet generalized Catalan numbers.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,