Article ID Journal Published Year Pages File Type
421289 Discrete Applied Mathematics 2010 10 Pages PDF
Abstract

Following our recent exposition on the algebraic foundations of signed graphs, we introduce bond (circuit) basis matrices for the tension (flow) lattices of signed graphs, and compute the torsions of such matrices and Laplacians. We present closed formulas for the torsions of the incidence matrix, the Laplacian, bond basis matrices, and circuit basis matrices. These formulas show that the torsions of all such matrices are powers of 2, and so imply that the matroids of signed graphs are representable over any field of characteristic not 2. A notable feature of using torsion is that the Matrix-Tree formula for ordinary graphs and Zaslavsky’s formula for unbalanced signed graphs are unified into one Matrix-Basis formula in terms of the torsion of its Laplacian matrix, rather than in terms of its determinant, which vanishes for an ordinary graph unless one row is deleted from the incidence matrix.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,