Article ID Journal Published Year Pages File Type
421472 Discrete Applied Mathematics 2006 16 Pages PDF
Abstract

In this paper, we study how to collect n balls moving with a fixed constant velocity in the Euclidean plane by k robots moving on straight track-lines through the origin. Since all the balls might not be caught by robots, differently from Moving-target TSP, we consider the following 3 problems in various situations: (i) deciding if k robots can collect all n balls; (ii) maximizing the number of the balls collected by k robots; (iii) minimizing the number of the robots to collect all n balls. The situations considered in this paper contain the cases in which track-lines are given (or not), and track-lines are identical (or not). For all problems and situations, we provide polynomial time algorithms or proofs of intractability, which clarify the tractability–intractability frontier in the ball collecting problems in the Euclidean plane.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , , ,