Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
422151 | Electronic Notes in Theoretical Computer Science | 2008 | 10 Pages |
Abstract
By the Riesz Representation Theorem for locally compact Hausdorff spaces, for every positive linear functional I on K(X) there is a measure μ such that , where K(X) is the set of continuous real functions with compact support on the locally compact Hausdorff space X. In this article we prove a uniformly computable version of this theorem for computably locally compact computable Hausdorff spaces X. We introduce a representation of the positive linear functionals I on K(X) and a representation of the Borel measures on X and prove that for every such functional I a measure μ can be computed and vice versa such that .
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics