Article ID Journal Published Year Pages File Type
422508 Electronic Notes in Theoretical Computer Science 2008 20 Pages PDF
Abstract
The satisfiability problem is the fundamental problem in proving the conflict-freeness of specifications, or in finding a counterexample for an invalid statement. In this paper, we present a non-deterministic, monotone algorithm for this undecidable problem on graphical conditions that is both correct and complete, but in general not guaranteed to terminate. For a fragment of high-level conditions, the algorithm terminates, hence it is able to decide. Instead of enumerating all possible objects of a category to approach the problem, the algorithm uses the input condition in a constructive way to progress towards a solution. To this aim, programs over transformation rules with external interfaces are considered. We use the framework of weak adhesive HLR categories. Consequently, the algorithm is applicable to a number of replacement capable structures, such as Petri-Nets, graphs or hypergraphs.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
,