Article ID Journal Published Year Pages File Type
422522 Electronic Notes in Theoretical Computer Science 2007 21 Pages PDF
Abstract

The first step in the verification of cryptographic protocols is to decide the intruder deduction problem, that is the vulnerability to a so-called passive attacker. We extend the Dolev-Yao model in order to model this problem in presence of the equational theory of a commutative encryption operator which distributes over the exclusive-or operator. The interaction between the commutative distributive law of the encryption and exclusive-or offers more possibilities to decrypt an encrypted message than in the non-commutative case, which imply a more careful analysis of the proof system. We prove decidability of the intruder deduction problem for a commutative encryption which distributes over exclusive-or with a DOUBLE-EXP-TIME procedure. And we obtain that this problem is EXPSPACE-hard in the binary case.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics