Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
422623 | Electronic Notes in Theoretical Computer Science | 2011 | 15 Pages |
In this paper we present a formalism based on stochastic automata to describe the stochastic dynamics of signal transduction networks that are specified by rule-sets. Our formalism gives a modular description of the underlying stochastic process, in the sense that it is a composition of smaller units, agent-views. The view of an agent is an automaton that identifies all local modification changes of that agent (internal state modifications, binding and unbinding), but also those of interacting agents, which are tested within the same rule. We show how to represent the generator matrix of the underlying Markov process of the whole rule-set as Kronecker sums of the rate matrices belonging to individual view-automata. In the absence of birth the automata are finite, since the number of different contexts in which one agent can appear in a