Article ID Journal Published Year Pages File Type
423044 Electronic Notes in Theoretical Computer Science 2006 13 Pages PDF
Abstract

The approaches to automatic formal verification of UML models known up to now require a finite bound on the number of objects existing at each point in time. In [W. Damm, B. Westphal, Live and let die: LSC-based verification of UML-models, Science of of Computer Programming 55 (2005) 117–159] we have observed that the class of hardware systems with replicated components studied by McMillan [K.L. McMillan, A methodology for hardware verification using compositional model checking, Science of Computer Programming 37 (2000) 279–309] is equivalent to the class of systems where the only source of infiniteness is unbounded creation and destruction of objects, i.e. where all data-types except for object identities are finite. Exploiting the symmetry of UML models induced by objects being instances of classes, the restriction to finite bounds can be overcome applying [K.L. McMillan, A methodology for hardware verification using compositional model checking, Science of Computer Programming 37 (2000) 279–309].In this paper we report on experiences from an evaluation of this approach within the UML Verifi- cation Environment (UVE) [I. Schinz, T. Toben, C. Mrugalla and B. Westphal, The Rhapsody UML Verification Environment, in: J.R. Cuellar and Z. Liu, editors, Proceedings SEFM 2004 (2004), pp. 174–183], a state-of-the-art tool for formal verification of UML models using Live Sequence Charts (LSC) [W. Damm, D. Harel, LSCs: Breathing Life into Message Sequence Charts, Formal Methods in System Design 19 (2001) 45–80] for requirements specification.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics