Article ID Journal Published Year Pages File Type
423129 Electronic Notes in Theoretical Computer Science 2006 14 Pages PDF
Abstract

The ρ-calculus generalises both term rewriting and the λ-calculus in a uniform framework. Interaction nets are a form of graph rewriting which proved most successful in understanding the dynamics of the λ-calculus, the prime example being the implementation of optimal β-reduction. It is thus natural to study interaction net encodings of the ρ-calculus as a first step towards the definition of efficient reduction strategies. We give two interaction net encodings which bring a new understanding to the operational semantics of the ρ-calculus; however, these encodings have some drawbacks and to overcome them we introduce bigraphical nets—a new paradigm of computation inspired by Lafont's interactions nets and Milner's bigraphs.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics