Article ID Journal Published Year Pages File Type
423592 Electronic Notes in Theoretical Computer Science 2016 24 Pages PDF
Abstract

Web Service discovery and selection deal with the retrieval of the most suitable Web Service, given a required functionality. Addressing an effective solution remains difficult when only functional descriptions of services are available. In this paper, we propose a solution by applying Case-based Reasoning, in which the resemblance between a pair of cases is quantified through a similarity function. We show the feasibility of applying Case-based Reasoning for Web Service discovery and selection, by introducing a novel case representation, learning heuristics and three different similarity functions. We also experimentally validate our proposal with a dataset of 62 real-life Web Services, achieving competitive values in terms of well-known Information Retrieval metrics.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics