Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
423603 | Electronic Notes in Theoretical Computer Science | 2008 | 16 Pages |
The geometric structural complexity of spatial objects does not render an intuitive distance metric on the data space that measures spatial proximity. However, such a metric provides a formal basis for analytical work in transformation-based multidimensional spatial access methods, including locality preservation of the underlying transformation and distance-based spatial queries. We study the Hausdorff distance metric on the space of multidimensional polytopes, and prove a tight relationship between the metric on the original space of k-dimensional hyperrectangles and the standard p-normed metric on the transform space of 2k-dimensional points under the corner transformation, which justifies the effectiveness of the transformation-based technique in preserving spatial locality.