Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
423677 | Electronic Notes in Theoretical Computer Science | 2007 | 16 Pages |
The use of process calculi to represent biological systems has led to the design of different calculi such as brane calculi [Luca Cardelli. Brane calculi. In CMSB, pages 257–278, 2004] and κ-calculus [Vincent Danos and Cosimo Laneve. Formal molecular biology. Theoritical Computer Science, 325(1):69–110, 2004]. Both have proved to be useful to model different types of biological systems.As an attempt to unify the two directions, we introduce the bioκ-calculus, a simple calculus for describing proteins and cells, in which bonds are represented by means of shared names and interactions are modelled at the domain level. Protein-protein interactions have to be at most binary and cell interactions have to fit with sort constraints.We define the semantics of bioκ-calculus, analyse its properties, and discuss its expressiveness by modelling two significant examples: a signalling pathway and a virus infection.