Article ID Journal Published Year Pages File Type
424473 Electronic Notes in Theoretical Computer Science 2006 18 Pages PDF
Abstract

Several variants of Bryant's ordered binary decision diagrams have been suggested in the literature to reason about discrete functions. In this paper, we introduce a generic notion of weighted decision diagrams that captures many of them and present criteria for canonicity. As a special instance of such weighted diagrams, we introduce a new BDD-variant for real-valued functions, called normalized algebraic decision diagrams. Regarding the number of nodes and arithmetic operations like addition and multiplication, these normalized diagrams are as efficient as factored edge-valued binary decision diagrams, while several other operators, like the calculation of extrema, minimum or maximum of two functions or the switch from real-valued functions to boolean functions through a given threshold, are more efficient for normalized diagrams than for their factored counterpart.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics