Article ID Journal Published Year Pages File Type
426015 Information and Computation 2013 11 Pages PDF
Abstract

In this paper we make the first step beyond bidimensionality by obtaining subexponential time algorithms for problems on directed graphs. We develop two different methods to achieve subexponential time parameterized algorithms for problems on sparse directed graphs. We exemplify our approaches with two well studied problems. For the first problem, k-Leaf Out-Branching, which is to find an oriented spanning tree with at least k   leaves, we obtain an algorithm solving the problem in time 2O(klogk)n+nO(1) on directed graphs whose underlying undirected graph excludes some fixed graph H   as a minor. For the special case when the input directed graph is planar, the running time can be improved to 2O(k)n+nO(1). The second example is a generalization of the Directed Hamiltonian Path problem, namely k-Internal Out-Branching, which is to find an oriented spanning tree with at least k   internal vertices. We obtain an algorithm solving the problem in time 2O(klogk)+nO(1) on directed graphs whose underlying undirected graph excludes some fixed apex graph H as a minor. Finally, we observe that on these classes of graphs, the k-Directed Path problem is solvable in time O((1+ε)knf(ε))O((1+ε)knf(ε)), for any ε>0ε>0, where f is some function of ε.Our methods are based on non-trivial combinations of obstruction theorems for undirected graphs, kernelization, problem-specific combinatorial structures, and a layering technique similar to the one employed by Baker to obtain PTAS for planar graphs.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , ,