Article ID Journal Published Year Pages File Type
426109 Information and Computation 2012 22 Pages PDF
Abstract

Constraint satisfaction problems (or CSPs) have been extensively studied in, for instance, artificial intelligence, database theory, graph theory, and statistical physics. From a practical viewpoint, it is beneficial to approximately solve those CSPs. When one tries to approximate the total number of truth assignments that satisfy all Boolean-valued constraints for (unweighted) Boolean CSPs, there is a known trichotomy theorem by which all such counting problems are neatly classified into exactly three categories under polynomial-time (randomized) approximation-preserving reductions. In contrast, we obtain a dichotomy theorem of approximate counting for complex-weighted Boolean CSPs, provided that all complex-valued unary constraints are freely available to use. It is the expressive power of free unary constraints that enables us to prove such a stronger, complete classification theorem. This discovery makes a step forward in the quest for the approximation-complexity classification of all counting CSPs. To deal with complex weights, we employ proof techniques of factorization and arity reduction along the line of solving Holant problems. Moreover, we introduce a novel notion of T-constructibility that naturally induces approximation-preserving reducibility. Our result also gives an approximation analogue of the dichotomy theorem on the complexity of exact counting for complex-weighted Boolean CSPs.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
,