Article ID Journal Published Year Pages File Type
426400 Information and Computation 2015 27 Pages PDF
Abstract

Iterated games are well-known in the game theory literature. We study iterated Boolean games. These are games in which players repeatedly choose truth values for Boolean variables they have control over. Our model of iterated Boolean games assumes that players have goals given by formulae of Linear Temporal Logic (LTL), a formalism for expressing properties of state sequences. In order to represent the strategies of players in such games, we use a finite state machine model. After introducing and formally defining iterated Boolean games, we investigate the computational complexity of their associated game-theoretic decision problems, as well as semantic conditions characterising classes of LTL properties that are preserved by equilibrium points (pure-strategy Nash equilibria) whenever they exist.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,