Article ID Journal Published Year Pages File Type
426401 Information and Computation 2015 28 Pages PDF
Abstract

A general concept of uniform strategies has recently been proposed as a relevant notion in game theory for computer science, which subsumes various notions from the literature. It relies on properties involving sets of plays in two-player turn-based arenas equipped with arbitrary binary relations between plays; these properties are expressed in a language based on CTL⁎CTL⁎ with a quantifier over related plays. There are two semantics for our quantifier, a strict one and a full one, that we study separately. Regarding the strict semantics, the existence of a uniform strategy is undecidable for rational binary relations, but introducing jumping tree automata and restricting attention to recognizable relations allows us to establish a 2-Exptime-complete complexity – and still capture a class of two-player imperfect-information games with epistemic temporal objectives. Regarding the full semantics, relying on information set automata we establish that the existence of a uniform strategy is decidable for rational relations and we provide a nonelementary synthesis procedure. We also exhibit an essentially optimal subclass of rational relations for which the problem becomes 2-Exptime-complete. Considering rich classes of relations makes the theory of uniform strategies powerful: it directly entails various results in logics of knowledge and time, some of them already known, and others new.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,