Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
426463 | Information and Computation | 2011 | 25 Pages |
Typing of lambda-terms in elementary and light affine logic (EAL and LAL, respectively) has been studied for two different reasons: on the one hand the evaluation of typed terms using LAL (EAL, respectively) proof-nets admits a guaranteed polynomial (elementary, respectively) bound; on the other hand these terms can also be evaluated by optimal reduction using the abstract version of Lamping’s algorithm. The first reduction is global while the second one is local and asynchronous. We prove that for LAL (EAL, respectively) typed terms, Lamping’s abstract algorithm also admits a polynomial (elementary, respectively) bound. We also give a proof of its soundness and completeness (for EAL and LAL with type fixpoints), by using a simple geometry of interaction model (context semantics).