Article ID Journal Published Year Pages File Type
426479 Information and Computation 2014 13 Pages PDF
Abstract

A pattern is a string consisting of variables and terminal symbols, and its language is the set of all words that can be obtained by substituting arbitrary words for the variables. The membership problem for pattern languages, i.e., deciding on whether or not a given word is in the pattern language of a given pattern is NP-complete. We show that any parameter of patterns that is an upper bound for the treewidth of appropriate encodings of patterns as relational structures, if restricted, allows the membership problem for pattern languages to be solved in polynomial time. Furthermore, we identify new such parameters.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,