Article ID Journal Published Year Pages File Type
426672 Fuzzy Information and Engineering 2014 33 Pages PDF
Abstract

The manuscript continues our study on developing a categorically-algebraic (catalg) analogue of the theory of natural dualities of D. Clark and B. Davey, which provides a machinery for obtaining topological representations of algebraic structures. The new setting differs from its predecessor in relying on catalg topology, introduced lately by the author as a new approach to topological structures, which incorporates the majority of both crisp and many-valued developments, ultimately erasing the border between them. Motivated by the variable-basis lattice-valued extension of the Stone representation theorems done by S. E. Rodabaugh, we have recently presented a catalg version of the Priestley duality for distributive lattices, which gave rise (as in the classical case) to a fixed-basis variety-based approach to natural dualities. In this paper, we extend the theory to variable-basis, whose setting is completely different from the respective one of S. E. Rodabaugh, restricted to isomorphisms between the underlying lattices of the spaces.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics