Article ID Journal Published Year Pages File Type
426898 Information and Computation 2008 12 Pages PDF
Abstract

We study approximation hardness of the Minimum Dominating Set problem and its variants in undirected and directed graphs. Using a similar result obtained by Trevisan for Minimum Set Cover we prove the first explicit approximation lower bounds for various kinds of domination problems (connected, total, independent) in bounded degree graphs. Asymptotically, for degree bound approaching infinity, these bounds almost match the known upper bounds. The results are applied to improve the lower bounds for other related problems such as Maximum Induced Matching and Maximum Leaf Spanning Tree.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics