Article ID Journal Published Year Pages File Type
427797 Information Processing Letters 2009 6 Pages PDF
Abstract

We describe a simple combinatorial approximation algorithm for finding a shortest (simple) cycle in an undirected graph. Given an adjacency-list representation of an undirected graph G with n vertices and unknown girth k, our algorithm returns with high probability a cycle of length at most 2k for even k and 2k+2 for odd k, in time . Thus, in general, it yields a approximation. For a weighted, undirected graph, with non-negative edge weights in the range {1,2,…,M}, we present a simple combinatorial 2-approximation algorithm for a minimum weight (simple) cycle that runs in time O(n2logn(logn+logM)).

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics