Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
428033 | Information Processing Letters | 2008 | 6 Pages |
Abstract
In this paper, we study the classic and well-studied longest common subsequence (LCS) problem and a recent variant of it, namely the constrained LCS (CLCS) problem. In the CLCS problem, the computed LCS must also be a supersequence of a third given string. In this paper, we first present an efficient algorithm for the traditional LCS problem that runs in O(Rloglogn+n) time, where R is the total number of ordered pairs of positions at which the two strings match and n is the length of the two given strings. Then, using this algorithm, we devise an algorithm for the CLCS problem having time complexity O(pRloglogn+n) in the worst case, where p is the length of the third string.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics