Article ID Journal Published Year Pages File Type
428215 Information Processing Letters 2007 7 Pages PDF
Abstract

The Euclidean Minimum Spanning Tree problem is to decide whether a given graph G=(P,E) on a set of points in the two-dimensional plane is a minimum spanning tree with respect to the Euclidean distance. Czumaj et al. [A. Czumaj, C. Sohler, M. Ziegler, Testing Euclidean Minimum Spanning Trees in the plane, Unpublished, Part II of ESA 2000 paper, downloaded from http://web.njit.edu/~czumaj/] gave a 1-sided-error non-adaptive property-tester for this task of query complexity . We show that every non-adaptive (not necessarily 1-sided-error) property-tester for this task has a query complexity of , implying that the test in [A. Czumaj, C. Sohler, M. Ziegler, Testing Euclidean Minimum Spanning Trees in the plane, Unpublished, Part II of ESA 2000 paper, downloaded from http://web.njit.edu/~czumaj/] is of asymptotically optimal complexity. We further prove that every adaptive property-tester has query complexity of Ω(n1/3). Those lower bounds hold even when the input graph is promised to be a bounded degree tree.

Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics